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Let # be a topos and let & be a topos defined over .7 by a geometric morphism y.
Objects of & of the form y*X for X e # are called constant objects. In this paper we
shall study the full subcategory &* of & consisting of all subobjects of constant
objects in 4. In the case where # is the category ¥ of sets we construct, for each
complete Heyting algebra H, a simple category H which we show to be equivalent to
&*when H is the algebra of subobjects of the terminal object in &. This yields a new
and especnally straightforward proof of the well-known result that a topos defined
over ¥ is equivalent as a category to a Boolean extension of the universe of sets iff it
satisfies the axiom of choice. We go on to investigate the properties of & and in
Section 2 we extend some of our results to the case in which .7 is an arbitrary base
topos.

1. Toposes defined over the category of sets

Let £ be a topos defined over the category .7 of sets by a geometric morphism y.
In this case we know that y*I=]1,1 and y.X = 4(1, X) for /e #, X € £. Moreover,
the coproduct of any family of subobjects of 1 always exists in E (cf. the remark on
page 120 of [3]), and the objects of &* are precisely the objects of ¢ which are of this
form. We first find a particularly simple alternative description of 4™,

Let H be a complete Heyting algebra (frame, locale). We define the category A
as follows. The objects of H are all functions I—a'H a={api.; for all sets I. If
1-*H J— H are two objects in A, an arrow a% b is a function piIxJ—H,
P={Pydies jessuch that

p;isb; (iel,jel), (1.1)
Pinpy=0 (el j#j'el), (1.2)
\/Jp,j=a, (iel). (1.3)
Jje
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(We may think of an object @ of H as an ‘H-valued set’ in which a(i)e H is the
‘H-value’ of the statement iea. An arrow a5 b in 4 may be thought of as an
‘H-valued functional relation’ between a and b.) If ¢ = (¢}« is an object of A and
q:JxK—His an arrow b—cin H, the composition gp =r of p and g is defined by

rx=V DiiNG .
jeJ

[t is easy to check that composition is associative and that the identity arrow id :a—a
is given by the ‘Kronecker delta’ function J:7x I— H such that

J,’i'=0 (i+i), J,','=l.
If & is an #-topos, then (cf. the proof of 5.37 of [3]), y.f2. is a complete Heyting
algebra; it is naturally isomorphic to the (partially ordered) set of subobjects of 1 in

é. Thus the latter is a complete Heyting algebra.
Now we can prove ’

1.1. Theorem. Let & be an #-topos, and let H be the complete Heyting algebra of
subobjects of 1 in &. Then &*=H. If in addition the axiom of choice holds in &,
then (H is a complete Boolean algebra and) & = H.

Proof. We define a functor F: H— ¢ as folows. For each object a:/—H in H we
put

Fa)=11a,.

iel

If b:J— His an object in A and p:a—b an arrow in H, we define F(p):Fla)— F(b)
as follows. From (1.2) and (1.3) we have

a=11p; (iel)

jeJ

and from the (unique) arrows p;—— b, given by (1.1) we obtain for each ie/ a
unique arrow s; such that the diagram

pj T b

|

S;
.U.Pij R llbj
jed jelJ
commutes for all ie /, jeJ, where the downward arrows are canonical injections.
We put p/ for the composition

Si
ai—— 1L p;— 1Lb;.

jieJ jelJ
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Thus p; is the unique arrow making the diagram

pyr—— b

\ Y
l I (1.4)

p;
a; — 11b;

commute. We finally define F(p) to be the unique arrow such that the diagram

a’,
ai"'—"’ 1la;
iel
pi Jf(p)
115;
jelt

commutes for each ie [, where g, is the canonical injection.

It is not hard to check that F is a functor, and clearly each object in £* is

(isomorphic to an object) in the range of F. Accordingly, to show that F is an
equivalence it suffices to show that F is full and faithful.

AF L wrn Fivet Alacarva that tha Aiagram (1 A ic a ma

l U chly LllC uucuty Ul L7, WC LIIDL UUDCL VU Lilal LUt diaglialll (1.#) 1>da pu

eachiel, jeJ. For let
rg— b;

|, |

pi
a— 115,

be a pullback. Then clearly, since (1.4) commutes, we have p;<r;. On the other
hand, by the universality of coproducts in &, we have

aigllrij)
jeJ
so that
V plj'—a! V ru

But it now follows from the disjointness of coproducts in ¢ that r;Ar; =0 when
J#Jj’.One eagily concluges from this that Pij=ri, S0 (1.4) is indeed a pullback.
Now let a— b and a— b be arrows in A and suppose that F(p)=F(g). Then
=g/ for all i e I and so, since (1.4) is a pullback, it follows that q; < py. Similarly,
Pii=q;and so p=gq. Hence F is faithful as claimed.
Finally, we show that F is full. Suppose that a,b are objects in A and that
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F(a)—f'F(b) is an arrow in #. For each i, j form the pullback

py— b

] BT

-
a; "‘—f“_l" ubj

By the universality of coproducts in ¢ we have 11,., p;;=a,; and by the disjointness

of coproducts in & we have p;Ap;=0 for j=#j’, whence V,.,p;=a;. Hence

P={Pidiel jesis an arrow a—b in H. We claim F(p)=f. For this to be the case it

suffices that F(p)og;= fo,; for all ie . But this follows immediately from (1.4), (1.5)

and the fact that p; = F(p)o;.

Thus F is an equivalence and ¢*=H.

Now suppose that & satisfies the axiom of choice. Then, by 5.3 of [3], the
subobjects of 1 form a set of generators in £ and so each object of & is covered by a
family of subobjects of 1. Using the axiom of choice in ¢, it follows easily from this
that each object of ¢ is isomorphic to a coproduct of subobjects of 1, whence
¢=¢*=H. O

We recall that [1] that, for each complete Boolean algebra B, the Boolean
extension V' of the universe of sets in the sense of Scott—Solovay may be regarded
as an #-topos in a natural way. Since the axiom of choice holds in such a topos
(provided it holds in #!), Theorem 1.1 yields as an immediate consequence the
following well-known result.

1.2. Corollary. An F-topos is equivalent to one of the form V® for a complete
Boolean algebra B if and only if it satisfies the axiom of choice.

Our next theorem shows that a number of conditions on §*and H are equivalent.

1.3. Theorem. Let & be an ¥-topos and let H be the complete Heyting algebra of
subjects of 1 in &. Consider the conditions:
(i) ¢ satisfies the axiom of choice;
(ii) €*< & is an equivalence;
(iii) Q. is isomorphic to an object in £*;
(iv) & is Boolean;
(v) &*=H is a topos;
(vi) &*=H has a subobject classifier;
(vil) H is a Boolean algebra;
(viii) H=V® for some complete Boolean algebra B.
Then (i) « (ii) = (iii) ® (iv) = (v), and (v) through (viii) are equivalent. If & is localic
over ¥, then all the conditions are equivalent. Thus conditions (v) through (viii) are
equivalent for any complete Heyting algebra H.
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Proof. (i)=(ii) follows from Theorem 1.1.

(ii) = (iii) is trivial.

(iii)= (iv). Recall that an object X of a topos is said to be decidable if the
diagonal subobject X =— X x X has a complement. It is easy to verify that, since
each object X of ¥ is decidable, so is each object of 4 of the form y*X and hence so
is any subobject of such an object; i.e. any object in *is decidable. Thus condition
(iii) implies that . is decidable, and this is well known to be equivalent to
Booleanness of 4.

(iv)=(iii). If ¢ is Boolean, then Q. =1+ 1=y*1+1)es*

(ii)= (i). If (i) holds, then # is certainly localic over #; but since (ii) = (iii) = (iv) ¢
is also Boolean. Then by 5.39 of {3] the axiom of choice in ¥ yields the axiom of
choice in ¢. .

(iii) = (vi). Since #*is easily seen to be closed under products and subobjects in &,
it follows that it is also closed under puilbacks in ¢. The implication in question now
follows easily.

(v)=(vi) is trivial.

(vi)=(vii). Let (b;>;c, be the subobject classifier in H. Then, given ae H, the
object (a) of H is a subobject of the terminal object (1) in H and so there are arrows

(Y= (bpics Dy (bjes

in A such that

(@) —— (D

J Iq (1.6)
P

<1> —_ <bj>j€./
is a pullback. Since p and g are arrows in A, we have
PiADk=qiNgy=0 for j#kel,
1= V pj= V Gi»
jel kel

so that

V V piAge=1. (1.7)

jeJ kek

Since (1.6) commutes, we have

ang;=anp; (jelJ),
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so that

a=anl=Vanp;
jet

=V anp;Ag;
jed

= V ijQj. (1.8)
jed

But since (1.6) is a pullback, we must have, for all ce H,
VieJlcApj=cAg;] = c=a.
In particular, taking c=V,., pjAg;, we get

V pj/\qjsa’
jeJ

so that, by (1.8), 2=V, pjAq;. But then, by (1.7), @ has a complement V,,, pjA g,
in H. This gives (vii).

(vii) = (viii). This follows from Theorem 1.1.

(viii) = (v) is trivial.

Finally, if & is localic over %, then (vii)= (iv) and hence (in this case) (vii)= (i).
For suppose that £ is not Boolean; then = - : 2— is not the identity. Hence by the
localicity of # there is U1 and U—— Q such that

a a -
R UU—Q— Q.

U

. e . B
Since €2 is injective there is | — £ such that

o B

U—Q=U—"1—Q.
Clearly, then

-2 g2 gx1 0

But this means that the subobject of 1 classified by # is not equal to its double
complement in H, i.e. H is not Boolean. [J

Remark. It is well known that the implication (i)= (iv) cannot be reversed; e.g. take
& to be the topos #C of G-sets for a group G. A similar counterexample shows the
irreversibility of the implication (iv) = (v): take £ to be the topos #™ of M-sets for a
monoid M which is not a group. Then E is not Boolean; on the other hand 1 has
only two subobjects 0 and 1 in &, so £*=% and (v) is satisfied.
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2. Toposes defined over an arbitrary base topos

We now suppose that # is a topos defined over an arbitrary base topos .7 by a
and

and invectigate the avtent tao which the reculte
ent 1o walcn N¢ resuits 1

geometric morphism y and investigate the exter
constructions of the previous section carry over to this more general setting. We
shall employ freely the internal (Mitchell-Benabou) language of a topos as
presented in §5.4 of [3].

To begin with, let us see how to generalize the construction of H. LetHb
internally complete Heyting algebra object in #; we define the category /
follows. (It is important to observe that A is an ‘honest-to-goodness’ category, not
an internal category in .7.)

First of all, the objects of A are the objects of .#/H, i.e. all arrows I Hin 7

Before defining the arrows of A we need some notation. We let

o
<\

n

ntq
o
w

Ag:Q,-H

be the arrow defined by
Au(p)=Vy{aeH:(a=1u)Ap},

where p is a variable of type Q ;.. For each object J of %, we let
O IxJ—=Q ;

be the classifying arrow of the diagonal subobject of JxJ, and we put eq for the
composition

dy 1y

JIxJ Q; H.

. e . . b ~
Now we can define the arrows of H. Given objects I—a—> Hand J— Hof H, an
arrow a2 bin His an arrow IxJ 2> Hin 7 satisfying the following conditions,
where i, j, j’,x are variables of types /,J,J, H respectively:

Fep(, j))=nb(J)) : @.1
Fepl, AP )=neq (U, J) (2.2)
FeVy{x: Jj [x=p(, j)]} =al). 2.3)

(Notice that these conditions are just the ‘internal’ analogues of the conditions
c . . 3 .
(1.1),(1.2),(1.3).) If K—— H is an object of H and Jx K~ H is an arrow b— ¢
in H, the composition gp =r is given by
r(i, k) =Vy {x: Jj [x= p(i, )ING(, K1},
where k is a variable of type k. The identity arrow

id,

a—a
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in A is given by
id,=Ay- (eqpan,),

where 7, is ‘projection onto the first coordinate’ and A, is the meet operation in H.
It is readily checked that these data do determine a category.

Now let & = 7 be a geometric morphism. Then ([3], 5.36) H=y.2. is an
internally complete Heyting algebra object in #, and in this case it is easily verified
that the arrow A = A has (p*-y.)-transpose 1 : y*Q, — 2, classifying p*(true ;).

We recall that we have defined ¢* to be the full subcategory of & whose objects
are all subobjects of objects of the form y*I for Ie #. We shall prove the analogue
of 1.1 in this more general context.

2.1. Theorem. &*=(y.Q.)".

Before giving the proof, we need some more terminology and a lemma.
Let X — Y be a partial arrow in ¢, given by the diagram

S
X —Y
f’I (2.4)

X

We define the graph of f, gph(f), to be the image of the arrow

S0
X'L’XX Y,

i.e. the extension of the formula
qx’ [{x, vy =f'(x"), f(x'D],

where x, x’, y are variables of types X, X", Y respectively.

2.2. Lemma. Let XX Y — ., let R be the subobject of X X Y classified by r, and
let 'R be the corresponding global element of QX*Y Then the following are
equivalent:
(i) R=gph(f) for some X L Y;

(i) EE(y)e RN De R s y=z

(ili) Ex=r(xq Y)Ar(x,2)<q, 6y(),2),
where x, y, z are variables of type X, Y, Y respectively. Moreover, if these conditions
hold, then the subobject X' of X on which f is defined may be taken to be
|x: 3y <x, y> € 'R, or equivalently |x: dy [r(x, y) =true;]].

Proof. (ii) ¢ (iii) holds by definition.
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(i) = (ii). We have, introducing variables x’,x” of type X",
8 = (x, ») € "gph(f) ALx, 2) € "gph(f)!
=3x [x=f'(x)Ay=fNAIxX" [x=f"(x")Az=f(x")]
=y=2,

by the monicity of f’ (see diagram (2.4)).
(ii)= (i). Form the pullback

X’ ! — Y
f’I IH 2.5)
e ®Y oy

Then we have
£ = pyefgph(f) & Fx' [x=f'(x)Ay=f(x)]
o {x:(x2>eR'}={y} (since (2.5)is a pullback)
e (x»eR (by (i)

Thus R =gph(f) as required.
To prove the final assertion, we merely observe that, by the above,

cedx x=1)] ¢ dy [x, ) e R O
Now we can provide the

Proof of Theorem 2.1. We define a functor
B:(ye82,)" > 5>

as follows. Given an arrow /] —— P02, in (.2,)", let

},*I-—J+ Q’,

be its transpose across the adjunction y*-y,, and let B(a) be the subobject of y*/
classified by a. Clearly B(a) € £* and every object of #*is isomorphic to an object of
this form. 5 o

Next, given an object J— y,.£2, and an arrow a—— b in (y.£,)~, i.e. an arrow
IxJ-% v«82, in F satisfying (2.1), (2.2), (2.3) (with H=y,Q,), let

Dy xyrS=y*(IxJ)— Q2.

be its transpose across y* —y,. After transposition across y* —y,, conditions (2.1),
(2.2) and (2.3) become the following, where x, y, z are variables of type y*I, y*J, y*J,
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respectively, and &, & are the transposes of a, b, respectively:

&= plx, y)<b(y) (2.1)
& B PO YIAPX,2) S 6y (), 2) (2.29)
|Jy [B(x, y) =true, ]| =a(x). 2.3)

From Lemma 2.2 we see that (2.2’) implies that there is a partial arrow

s
yr— ¥,

unique up to isomorphism, such that gph(f) is equal to the subobject of y*/x y*J
classified by p. Condition (2.3’) tells us that f is defined on the subobject f(a) of y*/
classified by @, and (2.1’) that the image of f is contained in the subobject 8(b) of
y*J classified by &. Thus we may regard f as an arrow

S
Bla)— B(b).

We put 8(p)=/.
One can now check (tediously!) that 8 preserves composition and the identity
arrows. Thus we have a functor

B:(p*Q.)"— &*.

It remains to show that 8 is an equivalence of categories. We have already remarked
that every object in &* is isomorphic to one in the range of §. Also, § is clearly
faithful. To show that 8 is full, let g,be (y.2,)~ and let ,B(a)—f> B(b) be an arrow
in £*. Let p be the characteristic arrow of the subobject of y*I' X y*J corresponding
to the graph of f. It is then easy to check that (2.1, (2.2"), (2.3") hold for p, and
transposition across y* -y, yields (2.1), (2.2), (2.3) for its transpose p. Thus
a—2 b is an arrow in (7+82.)~, and clearly B(p) = f. Hence f is full, and therefore
and equivalence. [

By taking &£ =7 and y the identity functor in Theorem 2.1, we immediately
obtain

2.3. Corollary. Q ,=7. O

Having affirmed that Theorem 1.1 carries over to the case of an arbitrary base
topos, we may now ask to what extent the same is true of Theorem 1.3. I have not
been able to solve this problem completely, but I shall give a partial solution in
Theorem 2.5. First, however, we require another lemma, which gives a canonical
representation of objects in &£*.

2.4. Lemma. For each object X of & the following are equivalent:
(i) Xeé*
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(ii) there is a monic X = y*y.X, where X is the partial map classifier of X. If X is
injective, then X may be replaced by X.

Proof. (ii)= (i) being trivial, we need only prove (i)= (ii). If X € £*, then by defini-
tion there is Ye # and a monic X > p*Y. Hence there is y*Y—g—'X’ such that the
diagram

noo_
— X

X
I .
y*Y

. a > .
commutes. Now if Y — y,X is the transpose of « across y*—y., we have the
commutative diagram

y*Y —2.x
y¥@a) e
i’*}’*l\?

where ¢ is the counit arrow. Hence the composition

(7)) _
X "y —= y*yaX

is monic.
Clearly, if X is injective, we may replace X by X and 75 by the identity arrow. [

Now we can prove:

2.5. Theorem. Let # be a topos, let & be a topos defined over 7 by a geometric
morphism y, and let H=y.Q,.. Consider the conditions:
(i) Q. is isomorphic to an object in &*;

(ii) the counit arrow y*y .8, - Q. has a section;

(iii) & is Boolean;

(iv) ¢*=H has a subobject classifier;

(v) H is an internal Boolean algebra.

Then (i) e (ii). If F is Boolean, then (i) ¢ (iii) = (iv) ¢ (v). Finally, if 7 is Boolean
and ¢ is localic over #, then all the conditions are equivalent.

Proof. (ii)= (i) is trivial.
(i):»(ii). By Lemma 2.4, if (i) holds, then since 2, is injective we have a monic
Q. >— y*y.Q,. Again using the injectivity of 2., there is an arrow y*y,.Q. 4, Q,
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such that f-a=id. Let y.Q. £, y.8. be the transpose of # across y* —y.. Then
B=&-y*(B), so
id=g-a=¢-y*(f)-a.
From now on we suppose that # is Boolean.
(i) @ (iii) is proved in exactly the same manner as (iii) & (iv) in Theorem 1.3,

(i)= (iv) is proved in just the same way as (iii)= (vi) in Theorem 1.3.
(iv)= (v). Suppose that £* has a subobject classifier

true’

| — Q"

Since Q' is a subobject of an object of the form y*X for some X € .# and since each
object in the Boolean topos # is decidable, Q" itself must be decidable. By standard
arguments, the global element

true’

| —
must then have a complement

false’

Q.
It follows that
(true'
false’
is an isomorphism between 1+ 1 and £2’. Thus 1+ 1 is the subobject classifier in &*,
Now, by §1 of [2], we may without loss of generality replace ¢ by the localic topos

F[H] of internal sheaves on H (since &*is unaffected by the change). Since F[H] is
localic over #, we have a diagram of the form

Y r— X

|

Q

where X € 7 and 2 is the subobject classifier in F[H]. Since 2 is injective, we have
an epic y*X — Q2. Form the pullback

z — 1

|

X

true

a

Q.

Since Z and y*X are both in £*and 1 +1 is the subobject classifier in £*, we have a
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pullback (in £*, and hence also in F[H])

zZ — 1

|

PR — 1+ 1
where g, is a canonical injection. Combining this with the obvious pullback diagram

| ———— 1

o, true

true
false
—_—— Q

1+1
yields a pullback
zZ 1
] l true
true
[false] B
yrY——— 0

But then @ and B - (f5is.) both classify the subobject Z of y*X, so they are equal; and
since a is epic, so is ({ic.). But ({5i%.) is obviously monic, and so it is an isomorphism.
Therefore F[H] is Boolean, which implies, by 2.2 of [2], that A is an internal
Boolean algebra.

(v)=(iv). Again we may without loss of generality replace £ by #[H]. If H is an
internal Boolean aigebra, then #[H] is Boolean by 2.2 of {2]. So the subobject
classifier 1 +1 of #[H] is in £*, and is clearly a subobject classifier there as well.

Finally, if & is localic over %, then & = #[H] by the relative Giraud theorem, and
(v) yields (iii) by 2.2 of [2]. O

3. Final remarks

In the original version of this paper, I posed a number of open problems, one of
which has recently been solved by Gordon Monro in [4]. These problems were:

(a) Does £*=H always have exponentials?

(b) If £ is a Boolean topos, defined and localic over a Boolean topos .#, must the
inclusion £*< £ be an equivalence? (By Theorem 1.3, this is true when .# =% and
the axiom of choice holds. It can also be shown to hold when # is any topos
satisfying the axiom of choice.)

(c) If the answer to (b) is, in general, no, find a characterization of those toposes
defined over a (Boolean) topos .7 for which & =4*,
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Let me sketch a proof that a positive answer to (a) (even just for Boolean ¢) yields
the same for (b). To begin with, it is easy to show that &* inherits (finite) products
from &. So if £ * has exponentials, where ¢ is Boolean and defined over a Boolean
topos .# by a geometric morphlsm ¥, then &* is a Boolean topos with subobject
classifier 2=1+ 1 inherited from ¢, Thus & and £* are both localic #toposes and,
by the relative Giraud theorem, they are both equivalent over # to the topos #[B]
of internal sheaves on the internally complete Boolean aigebra B = y,2 in .#. Accord-
ingly we have a commutative diagram

SR

A/

where « is an equivalence. If X € £* there is a diagram of the form X~ y*4 in § and
hence in §*, Applying « gives a X a(y*4) = y*A. Therefore aX € £*. Since a is an
equivalence, every object in & is isomorphic to one of the form aX, and hence to
one in &*. Therefore §*< & is an equivalence.

Now Monro has shown that the answer to (b) is, in general, no. In fact he shows
that §*< & can fail to be an equivalence even when the base topos 7 is 7, provided
the axiom of choice fails in a certain (relatively consistent) way in %. He starts with
the well-known Halpern—Levy model N of set theory in which the axiom of choice
fails but in which every set is totally orderable. Then he constructs a certain
complete Boolean algebra B in N such that, in the corresponding Boolean extension
N® with probability 1 the power set P(R) of the set of real numbers is not totally
orderable. Thinking of N as our base topos % of sets and N® as the (Boolean)
topos ¢ defined over %, it follows that the object P(R) of ¢ cannot be (isomorphic
to an object) in &*, for it is not hard to see that any object in * must be totally
orderable. So in this case the inclusion £*< £ cannot be an equivalence. We also see
that (a) fails as well: B does not have exponentials.

Problem (c) is, however, still open.
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