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Let 5 be a topos and let B be a topos defined over .F by a geometric morphism y. 
Objects of d of the form y*X for XE 3 are called constant objects. In this paper we 
shall study the full subcategory 6* of L consisting of all subobjects of constant 
objects in E. In the case where _F is the category Y of sets we construct, for each 
complete Heyting algebra H, a simple category I;i which we show to be equivalent to 
G * when H is the algebra of subobjects of the terminal object in 6. This yields a new 
and especially straightforward proof of the well-known result that a topos defined 
over %’ is equivalent as a category to a Boolean extension of the universe of sets iff it 
satisfies the axiom of choice. We go on to investigate the properties of Z? and in 
Section 2 we extend some of our results to the case in which 3 is an arbitrary base 
topos. 

1. Toposes defined over the category of sets 

Let ff be a topos defined over the category Y’of sets by a geometric morphism y. 
In this case we know that y*Z= u, 1 and y*X= A(1, X) for ZE Y’, XE 6. Moreover, 
the coproduct of any family of subobjects of 1 always exists in E (cf. the remark on 
page 120 of [3]), and the objects of 6* are precisely the objects of G which are of this 
form. We first find a particularly simple alternative description of A *. 

Let H be a complete Heyting algebra (frame, locale). We define the category Z? 
as follows. The objects of fi are all functions ZzZf, a =(ai)iEI for all sets I. If 
ZSZZ, .ZiZ-Z are two objects in Z?, an arrow azb is a function p:ZxJ+H, 

P=(P~)ie/,jEJSUCh that 

puSbj (iel, jeJ), 

pij~pvP=O (iel, j# j‘E J), 

V pij=aj (iEZ). 
jeJ 
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(We may think of an object (I of A as an ‘H-valued set’ in which ash is the 
‘H-value’ of the statement iEa. An arrow a ’ -+ b in A may be thought of as an 
‘H-valued functional relation’ between CI and 6.) If c= (ck)ksK is an object of Hand 
q : J x K -, H is an arrow b-+c in A, the composition qp = r of p and q is defined by 

rik= V PijAqjk* 
JEJ 

It is easy to check that composition is associative and that the identity arrow id : ada 
is given by the ‘Kronecker delta’ function 6:f xl+ H such that 

6ji’=O (i+i’), 6ii= 1. 

If G is an Y-topos, then (cf. the proof of 5.37 of [3]), y*Qr is a complete Heyting 
algebra; it is naturally isomorphic to the (partially ordered) set of subobjects of 1 in 
8. Thus the latter is a complete Heyting algebra. 

Now we can prove 

1.1. Theorem. Let 8 be an .Su-topos, and let H be the complete Heyting algebra 
subobjects of 1 in 8. Then &*=I?. If in addition the axiom of choice holds in 
then (H is a complete Boolean algebra and) d = l?. 

of 
8, 

Proof. We define a functor F: A-+ & as folows. For each object a:Z+H in Z? we 

Put 

F(a) = JJ Ui. 
iEI 

If 6: J+His an object inHand p:a+b an arrow in A, we defineF(p):F(a)+F(b) 
as follows. From (1.2) and (1.3) we have 

aiZ:po (iEZ) 
jr/ 

and from the (unique) arrows pu’bj given by (1.1) we obtain for each iE Z a 
unique arrow Si such that the diagram 

i i’ 
J_LPV ---% ubj 
JCJ jeJ 

commutes for all ie I, j E J, where the downward arrows are canonical injections. 
We put pi for the composition 

jeJ jsJ 
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Thus pi is the unique arrow making the diagram 

(1.4) 

commute. We finally define F(p) to be the unique arrow such that the diagram 

commutes for each i E I, where cri is the canonical injection. 
It is not hard to check that F is a functor, and clearly each object in &* is 

(isomorphic to an object) in the range of F. Accordingly, to show that F is an 
equivalence it suffices to show that F is full and faithful. 

To verify the fidelity of F, we first observe that the diagram (1.4) is a pullback for 
each i E I, j E J. For let 

be a pullback. Then clearly, since (1.4) commutes, we have piisrii. On the other 
hand, by the universality of coproducts in 6, we have 

aiZ u rii, 
is/ 

so that 

V Pij= ai=,yJ rij. 
jsJ 

But it now follows from the disjointness of coproducts in 8 that riiAr,-=O when 
j #j’. One ea;ily conclu$s from this that p_ii= rii, so (1.4) is indeed a pullback. 

Now let a+ b and a-r b be arrows in H and suppose that F(p) = F(q). Then 
pi = qi for all i E I and so, since (1.4) is a pullback, it follows that qii I pij. Similarly, 
pii I qii and so p = q. Hence F is faithful as claimed. 

Finally, we show that F is full. Suppose that a, b are objects in fl and that 
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F(a)LF(b) is an arrow in R. For each i,j form the pullback 

(1.5) 

By the universality of coproducts in R we have ~~~~~~~~~ and by the disjointness 
of coproducts in rs” we have pii~pdP= 0 for j #j’, whence V,,,pu =ai. Hence 
p= (po)iel,jaJ is an arrow a+b in I?. We claim F(p) = f. For this to be the case it 
suffices that F(p)oi=foi for all iEI. But this follows immediately from (1.4), (1.5) 
and the fact that p;=F(p)a;. 

Thus F is an equivalence and &*=R. 
Now suppose that d satisfies the axiom of choice. Then, by 5.3 of [3], the 

subobjects of 1 form a set of generators in 6 and so each object of 6’ is covered by a 
family of subobjects of 1. Using the axiom of choice in R, it follows easily from this 
that each object of R is isomorphic to a coproduct of subobjects of 1, whence 
a=s*=A. 0 

We recall that [l] that, for each complete Boolean algebra B, the Boolean 
extension V@) of the universe of sets in the sense of Scott-Solovay may be regarded 
as an Y-topos in a natural way. Since the axiom of choice holds in such a topos 
(provided it holds in Y’!), Theorem 1 .l yields as an immediate consequence the 
following well-known result. 

1.2. Corollary. An ju-topos is equivalent to one of the form VcB) for a complete 
Boolean algebra B if and only if it satisfies the axiom of choice. 

Our next theorem shows that a number of conditions on 6* and Hare equivalent. 

1.3. Theorem. Let 6 be an Y-topos and let H be the complete Heyting algebra of 
subjects of 1 in R. Consider the conditions: 

(0 
(ii) 

(iii) 

(iv) 
(v) 

(vi) 
(vii) 

(viii) 

8 satisfies the axiom of choice; 
&*G R is an equivalence; 
$2,: is isomorphic to an object in A*; 
8 is Boolean; 
&*=A is a topos; 
&*=I? has a subobject classifier; 
H is a Boolean algebra; 
R= VtB) for some complete Boolean algebra B. 

Then (i) c) (ii) = (iii) o (iv) = (v), and (v) through (viii) are equivalent. If 8 is localic 
over Y, then all the conditions are equivalent. Thus conditions (v) through (viii) are 
equivalent for any complete Heyting algebra H. 
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Proof. (i) = (ii) follows from Theorem 1.1. 

(ii) = (iii) is trivial. 
(iii)=(iv). Recall that an object X of a topos is said to be decidable if the 

diagonal subobject X ‘d-XxX has a complement. It is easy to verify that, since 
each object X of %’ is decidable, so is each object of 6 of the form y*X and hence so 
is any subobject of such an object; i.e. any object in C* is decidable. Thus condition 
(iii) implies that Q,* is decidable, and this is well known to be equivalent to 
Booleanness of 8. 

(iv) = (iii). If A is Boolean, then Sz, z 1 + 12 y*( 1 + 1) E r-f*. 
(ii) = (i). If (ii) holds, then f: is certainly localic over K but since (ii) = (iii)* (iv) & 

is also Boolean. Then by 5.39 of [3] the axiom of choice in Yyields the axiom of 
choice in 6. 

(iii) = (vi). Since A * is easily seen to be closed under products and subobjects in 6, 
it follows that it is also closed under pullbacks in G. The implication in question now 
follows easily. 

(v) = (vi) is trivial. 
(vi)= (vii). Let (bj)jc/ be the subobject classifier in I?. Then, given a EH, the 

object (a) of Ais a subobject of the terminal object (1) in Rand so there are arrows 

(1) p (bj)jeJ, (‘)L(bj)ja/ 

in fi such that 

4 

(1) df- (bj)jeJ 

is a pullback. Since p and q are arrows in fi, we have 

PjAPk=qjAqk=O for j # kE J, 

1 = V Pj' ky,qkv 
jsJ 

so that 

V V pjAqk’1. 
je/ krK 

Since (1.6) commutes, we have 

aAqj=aApj (j e J), 

(1.6) 

(1.7) 
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so that 
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a=aAl= V ClApi 
JEJ 

= V C7APjAqj 
IEJ 

I V PjAqj- 
JEJ 

But since (1.6) is a pullback, we must have, for all CE H, 

VjEJ [CAPj=CAqj] * csa. 

In particular, taking C= VjeJ Pjl\qj, we get 

(1 .f3) 

V PjAqjla, 
jeJ 

So that, by (1.8). a =VJE, PjAqje But then, by (1.7), a has a complement Vj+k PjAqk 

in H. This gives (vii). 
(vii) = (viii). This follows from Theorem 1.1. 
(viii) => (v) is trivial. 
Finally, if 6 is localic over Y, then (vii)=(iv) and hence (in this case) (vii)=(i). 

For suppose that A is not Boolean; then 11 : f2 -l2 is not the identity. Hence by the 
localicity of R there is II* 1 and LIZ Q such that 

iJ~.RfU~Q~Q. 

Since R is injective there is 1 z f2 such that 

U-LQ=U-l- /3 Q. 

Clearly, then 

But this means that the subobject of 1 classified by p is not equal to its double 
complement in H, i.e. His not Boolean. Cl 

Remark. It is well known that the implication (i) = (iv) cannot be reversed; e.g. take 
d to be the topos YG of G-sets for a group G. A similar counterexample shows the 
irreversibility of the implication (iv) = (v): take cf to be the topos ji.M of M-sets for a 
monoid M which is not a group. Then E is not Boolean; on the other hand 1 has 
only two subobjects 0 and 1 in b, so b*=Y and (v) is satisfied. 
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2. Toposes defined over an arbitrary base topos 

We now suppose that G is a topos defined over an arbitrary base topos 5 by a 
geometric morphism y and investigate the extent to which the results and 
constructions of the previous section carry over to this more general setting. We 
shall employ freely the internal (Mitchell-Benabou) language of a topos as 
presented in $5.4 of [3]. 

To begin with, let us see how to generalize the construction of H. Let H be an 
internally complete Heyting algebra object in z we define the category H as 
follows. (It is important to observe that H is an ‘honest-to-goodness’ category, not 
an internal category in Y.) 

First of all, the objects of H are the objects of X/H, i.e. all arrows IL H in .X 
Before defining the arrows of H we need some notation. We let 

AffZOi-+H 

be the arrow defined by 

IH(P)=VH{~EH:(U=IH)A~}, 

where p is a variable of type Q,. For each object J of 3, we let 

6,:JXJ-+Q, 

be the classifying arrow of the diagonal subobject of Jx J, and we put eq J for the 
composition 

Now we can define the arrows of H. Given objects I(I- H and Jb. H of H, an 
arrow a A b in His an arrow Ix Jp- H in 9 satisfying the following conditions, 
where i, j, j’,x are variables of types I, J, J, H respectively: 

Ft= p(i, j) s&j) (2.1) 

(2.2) 

Fe V, {x: 3j [x= p(i, j)]} = a(i). (2.3) 

(Notice that these conditions are just the ‘internal’ analogues of the conditions 
(1.1),(1.2),(1.3).)IfK~HisanobjectofAandJxK~Hisanarrowb-c 
in H, the composition qp = r is given by 

di,k)=VH {x: 3i [X=P(i,i)Aq(j,k)l}, 

where k is a variable of type k. The identity arrow 

id, 
a-a 
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in I? is given by 

where nl is ‘projection onto the first coordinate’ and A~ is the meet operation in H. 
It is readily checked that these data do determine a category. 

Now let J y. _F be a geometric morphism. Then ([3], 5.36) H=y,Q,? is an 
internally complete Heyting algebra object in 9: and in this case it is easily verified 
that the arrow ,I = AH has (y*iy&transpose z: y*Q i + Q,, classifying y*(true <). 

We recall that we have defined A* to be the full subcategory of d whose objects 
are all subobjects of objects of the form y*Z for IE .F. We shall prove the analogue 
of 1.1 in this more general context. 

2.1. Theorem. &*= (y&,)-. 

Before giving the proof, we need some more terminology and a lemma. 
LetXL Y be a partial arrow in 8, given by the diagram 

(2.4) 

X 

We define the graph off, gph(f), to be the image of the arrow 

<f’,.f > 
X-Xx Y, 

i.e. the extension of the formula 

zx Kx, u> = (f’(x’), fwDl, 

where x,x’, y are variables of types X,X’, Y respectively. 

2.2. Lemma. Let X x Y 5, Sz, , let R be the subobject of X x Y classified by r, and 
let ‘R’ be the corresponding global element of C!fx ‘. Then the following are 
equivalent: 

(i) R = gph( f) for some X --f-R 

(ii) E F (x, y> E 'R' A(X, z> E ‘R’ = y = z; 
(iii) Et= T(x,y)Ar(x,z) IQ,: ~Y(Y,z), 

where x, y, z are variables of type X, Y, Y respectively. Moreover, if these conditions 
hold, then the subobject X’ of X on which f is defined may be taken to be 
11~: Zy (x, y) E ‘R’II, or equivalently [Ix: Zy [r(x, y) = true4 ] II . 

Proof. (ii) cs (iii) holds by definition. 
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(i) = (ii). We have, introducing variables x’,x” of type X’, 

d E (x, ~9 E ‘gph(f)’ A(x, z> E ‘gph(J-)’ 

*,3x’ [x=f’(x’)Ay=f(x’)]A3x” [x=f’(x”)l\z=f(x”)] 

*_Y=t, 

by the monicity of f’ (see diagram (2.4)). 
(ii) = (i). Form the pullback 

X 
f 

’ Y 

f’ 

! i 

1.1 

X 
I{Y:(X,Y)ErR’}l 

‘QY 

(2.5) 

Then we have 

6 I= (x, y> E ‘gph(f)’ ++ 2x’ [x = j-(x’) A y = j-(x’)] 

e {x- (x z> E ‘ZZ’} = {y) - , (since (2.5) is a pullback) 

0 (x,y) E ‘Z?’ (by (ii)). 

Thus R = gph(f) as required. 
To prove the final assertion, 

d E 3x’ [x = f’(x’)] 

Now we can provide the 

we merely observe that, by the above, 

w 3y [(x,y) E ‘R’]. 0 

Proof of Theorem 2.1. We define a functor 

p: (y*ln,)_ +G* 

as follows. Given an arrow IL y&2? in (y,Qr)-, let 

0 y*z- R,t 

be its transpose across the adjunction y* -I y*, and let P(a) be the subobject of y*Z 
classified by 6. Clearly P(a) E 6* and every object of B* is isomorphic to an object of 
this form. 

Next, given an object JA y*sZ, and an arrow OA 6 in (y,Q8)-, i.e. an arrow 
ZxJa y&l/ in P satisfying (2.1), (2.2), (2.3) (with H= y&-J,), let 

P:y*Ixy*J=y*(ZxJ)-Q, 

be its transpose across y* + y*. After transposition across y* i y*, conditions (2. l), 
(2.2) and (2.3) become the following, where x, y,z are variables of type y*Z, y*J, y*J, 
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respectively, and 46 are the transposes of 0, b, respectively: 

8 k P(& Y) 56(Y) 

8 I= PC& Y)AP(& 2) 5 +,(Y, 2) 

I3Y [P(x, Y) = trueA 1 I = W. 

From Lemma 2.2 we see that (2.2’) implies that there is a partial arrow 

(2.1’) 

(2.2’) 

(2.3’) 

unique up to isomorphism, such that gph(f) is equal to the subobject of y*lx y*J 
classified by la. Condition (2.3’) tells us that f is defined on the subobject /?(a) of y*I 
classified by 0, and (2.1’) that the image off is contained in the subobject b(b) of 
y*J classified by 6. Thus we may regard f as an arrow 

We put P(p)=f. 
One can now check (tediously!) that /3 preserves composition and the identity 

arrows. Thus we have a functor 

p:(y*n,)- - cY*. 

It remains to show that /? is an equivalence of categories. We have already remarked 
that every object in g* is isomorphic to one in the range of p. Also, p is clearly 
faithful. To show that fl is full, let a, b E (y&2,)- and let P(a) L P(b) be an arrow 
in L*. Let p be the characteristic arrow of the subobject of y*lx y*J corresponding 
to the graph off. It is then easy to check that (2.1’), (2.2’), (2.3’) hold for B, and 
transposition across y* l I?* yields (2.1), (2.2), (2.3) for its transpose p. Thus 
a A b is an arrow in (y&2,)‘, and clearly /3(p) = f. Hence p is full, and therefore 
and equivalence. Cl 

By taking G = .Y and y the identity functor in Theorem 2.1, we immediately 
obtain 

2.3. Corollary. a.,-= 5 0 

Having affirmed that Theorem 1.1 carries over to the case of an arbitrary base 
topos, we may now ask to what extent the same is true of Theorem 1.3. I have not 
been able to solve this problem completely, but I shall give a partial solution in 
Theorem 2.5. First, however, we require another lemma, which gives a canonical 
representation of objects in &*. 

2.4. Lemma. For each object X of d the following are equivalent: 
(i) XE 8*; 
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(ii) there is a manic X -+ y*y.X, where ,? is the partial map classifier of X. If X is 

injective, then 8 may be replaced by X. 

Proof. (ii)=(i) being trivial, we need only prove (i) * (ii). If XE J*, then by defini- 
tion there is YE J and a manic Xti y*Y. Hence there is y*Y 22 such that the 
diagram 

X&X 

I/ 

a 

Y*Y 

commutes. Now if Y 2 y*X is the transpose of (Y across y*-iy*, we have the 
commutative diagram 

y*y ---%T 

Y *W 

I/ 

E 

)Y*y*x 

where E is the counit arrow. Hence the composition 

Y’(O) 
X_y*Y - Y*Y*X 

is manic. 
Clearly, if X is injective, we may replace 8 by X and q by the identity arrow. Cl 

Now we can prove: 

2.5. Theorem. Let f be a topos, let d be a topos defined over 3 by a geometric 
morphism y, and let H= y*sZR. Consider the conditions: 

(9 
(ii) 

(iii) 

(iv) 
(v) 

sZA is isomorphic to an object in &*; 
the counit arrow y*y&2r -& R, has a section; 
6 is Boolean; 
d*= I? has a subobject classifier; 
H is an internal Boolean algebra. 

Then (i) d (ii). Zf 9 is Boolean, then (i) w (iii) =$ (iv) * (v). Finally, if J is Boolean 
and d is localic over ~7 then all the conditions are equivalent. 

Proof. (ii)=(i) is trivial. 
(i)” (ii). By Lemma 2.4, if (i) holds, then since Or is injective we have a manic 

52, I---% y*y&, . Again using the injectivity of Qn,, there is an arrow y*yJ2,- A Q, 
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such that pa a= id. Let y,,s2,, L y* Q.C be the transpose of p across y* i y*. Then 

P=E* y*(P). so 

From now on we suppose that 9 is Boolean. 
(i) * (iii) is proved in exactly the same manner as (iii) * (iv) in Theorem 1.3. 
(i)= (iv) is proved in just the same way as (iii)=(vi) in Theorem 1.3. 
(iv)*(v). Suppose that 6* has a subobject classifier 

true’ 
1-Q’. 

Since W is a subobject of an object of the form y*X for some XE 3 and since each 
object in the Boolean topos 3 is decidable, Q’ itself must be decidable. By standard 
arguments, the global element 

true’ 
1-Q’ 

must then have a complement 

false’ 
1-Q’. 

It follows that 

true’ 

( > false’ 

is an isomorphism between 1 + 1 and 8’. Thus 1 + 1 is the subobject classifier in &*. 
Now, by $1 of [2], we may without loss of generality replace 6‘ by the localic topos 

d[H] of internal sheaves on H (since & * is unaffected by the change). Since Y[H] is 
localic over 3, we have a diagram of the form 

n 

where XE 5 and $2 is the subobject classifier in .Y[H]. Since Q is injective, we have 
an epic y*X - 0. Form the pullback 

z -1 

I I 

true 

a 
Y*X - R. 

Since Z and y*X are both in 6* and 1 + 1 is the subobject classifier in 8*, we have a 
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pullback (in A*, and hence also in Y[H]) 

z-1 

Y I 

c 
P c 

Y*X -l+l 

where oI is a canonical injection. Combining this with the obvious pullback diagram 

1 ’ 1 

yields a pullback 

Z ’ 1 

1 true 

true 

Y*X 
c I false .B ,I 

52 

But then a and /3. (KS& ) both classify the subobject Z of y*X, so they are equal; and 
since 0~ is epic, so is (2:. ). But ($) is obviously manic, and so it is an isomorphism. 
Therefore 3[H] is Boolean, which implies, by 2.2 of [2], that H is an internal 
Boolean algebra. 

(v) * (iv). Again we may without loss of generality replace d by J[H]. If H is an 
internal Boolean algebra, then Y[H] is Boolean by 2.2 of [2]. So the subobject 
classifier 1 +- 1 of .F[H] is in R*, and is clearly a subobject classifier there as well. 

Finally, if rf” is localic over .F, then 6 = I[H] by the relative Giraud theorem, and 
(v) yields (iii) by 2.2 of [2]. 0 

3. Final remarks 

In the original version of this paper, I posed a number of open problems, one of 
which has recently been solved by Gordon Monro in [4]. These problems were: 

(a) Does R*= fi always have exponentials? 
(b) If 6 is a Boolean topos, defined and localic over a Boolean topos Y, must the 

inclusion G*46 be an equivalence? (By Theorem 1.3, this is true when J= Y and 
the axiom of choice holds. It can also be shown to hold when x is any topos 
satisfying the axiom of choice.) 

(c) If the answer to (b) is, in general, no, find a characterization of those toposes 
defined over a (Boolean) topos 9 for which 8 = d *. 
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Let me sketch a proof that a positive answer to (a) (even just for Boolean 8) yields 
the same for (b). To begin with, it is easy to show that t’* inherits (finite) products 
from R. So if t * has exponentials, where 8 is Boolean and defined over a Boolean 
topos .F by a geometric morphism y, then R* is a Boolean topos with subobject 
classifier 2= 1 + 1 inherited from 8. Thus 8 and &* are both localic 5toposes and, 
by the relative Giraud theorem, they are both equivalent over F to the topos .F[B] 
of internal sheaves on the internally complete Boolean algebra B = y*2 in 5 Accord- 

ingly we have a commutative diagram 

a 
A*- A‘ 

Y' 

\/ 

Y* 

9 

where (Y is an equivalence. If XE 6* there is a diagram of the form X* y*A in 8 and 
hence in A*. Applying (r gives ax++ a(y*A) = y*A. Therefore C&E 6*. Since a is an 
equivalence, every object in G is isomorphic to one of the form crX, and hence to 
one in 6*. Therefore G*cr 8 is an equivalence. 

Now Monro has shown that the answer to (b) is, in general, no. In fact he shows 
that 6 * 4 d can fail to be an equivalence even when the base topos S is 7, provided 
the axiom of choice fails in a certain (relatively consistent) way in 9; He starts with 
the well-known Halpern-Levy model N of set theory in which the axiom of choice 
fails but in which every set is totally orderable. Then he constructs a certain 
complete Boolean algebra B in N such that, in the corresponding Boolean extension 
NfB), with probability 1 the power set P(R) of the set of real numbers is not totally 
orderable. Thinking of N as our base topos Y of sets and N@) as the (Boolean) 
topos 8 defined over Y; it follows that the object P(R) of d cannot be (isomorphic 
to an object) in c?*, for it is not hard to see that any object in S* must be totally 
orderable. So in this case the inclusion &*c, t” cannot be an equivalence. We also see 
that (a) fails as well: B does not have exponentials. 

Problem (c) is, however, still open. 
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