SOME ASPECTS OF THE CATEGORY OF SUBOBJECTS OF CONSTANT OBJECTS IN A TOPOS

J.L. BELL

Mathematics Department, London School of Economics, London, England

Communicated by D.S. Scott Received 6 June 1980 Revised 1 April 1981

Let \mathscr{F} be a topos and let \mathscr{E} be a topos defined over \mathscr{F} by a geometric morphism γ . Objects of \mathscr{E} of the form γ^*X for $X \in \mathscr{F}$ are called *constant* objects. In this paper we shall study the full subcategory \mathscr{E}^* of \mathscr{E} consisting of all *subobjects* of constant objects in \mathscr{E} . In the case where \mathscr{F} is the category \mathscr{F} of sets we construct, for each complete Heyting algebra H, a simple category \widetilde{H} which we show to be equivalent to \mathscr{E}^* when H is the algebra of subobjects of the terminal object in \mathscr{E} . This yields a new and especially straightforward proof of the well-known result that a topos defined over \mathscr{F} is equivalent as a category to a Boolean extension of the universe of sets iff it satisfies the axiom of choice. We go on to investigate the properties of \widetilde{H} and in Section 2 we extend some of our results to the case in which \mathscr{F} is an arbitrary base topos.

1. Toposes defined over the category of sets

Let \mathscr{E} be a topos defined over the category \mathscr{S} of sets by a geometric morphism γ . In this case we know that $\gamma^*I = \coprod_I 1$ and $\gamma_*X = \mathscr{E}(1, X)$ for $I \in \mathscr{S}$, $X \in \mathscr{E}$. Moreover, the coproduct of any family of subobjects of 1 always exists in E (cf. the remark on page 120 of [3]), and the objects of \mathscr{E}^* are precisely the objects of \mathscr{E} which are of this form. We first find a particularly simple alternative description of \mathscr{E}^* .

Let *H* be a complete Heyting algebra (frame, locale). We define the category \tilde{H} as follows. The *objects* of \tilde{H} are all functions $I \xrightarrow{a} H$, $a = \langle a_i \rangle_{i \in I}$ for all sets *I*. If $I \xrightarrow{a} H$, $J \xrightarrow{b} H$ are two objects in \tilde{H} , an *arrow* $a \xrightarrow{p} b$ is a function $p: I \times J \to H$, $p = \langle p_{ij} \rangle_{i \in I, j \in J}$ such that

$$p_{ij} \le b_j \qquad (i \in I, j \in J), \tag{1.1}$$

 $p_{ij} \wedge p_{ij'} = 0 \quad (i \in I, j \neq j' \in J),$ (1.2)

$$\bigvee_{i \in J} p_{ij} = a_i \quad (i \in I). \tag{1.3}$$

0022-4049/82/0000-0000/\$02.75 © 1982 North-Holland

J.L. Bell

(We may think of an object a of \tilde{H} as an 'H-valued set' in which $a(i) \in H$ is the 'H-value' of the statement $i \in a$. An arrow $a \stackrel{P}{\to} b$ in \tilde{H} may be thought of as an 'H-valued functional relation' between a and b.) If $c = \langle c_k \rangle_{k \in K}$ is an object of \tilde{H} and $q: J \times K \to H$ is an arrow $b \to c$ in \tilde{H} , the composition qp = r of p and q is defined by

$$r_{ik} = \bigvee_{j \in J} p_{ij} \wedge q_{jk}.$$

It is easy to check that composition is associative and that the identity arrow $id: a \rightarrow a$ is given by the 'Kronecker delta' function $\delta: I \times I \rightarrow H$ such that

$$\delta_{ii'}=0 \quad (i\neq i'), \qquad \delta_{ii}=1.$$

If \mathscr{E} is an \mathscr{S} -topos, then (cf. the proof of 5.37 of [3]), $\gamma_*\Omega_{\mathscr{E}}$ is a complete Heyting algebra; it is naturally isomorphic to the (partially ordered) set of subobjects of 1 in \mathscr{E} . Thus the latter is a complete Heyting algebra.

Now we can prove

1.1. Theorem. Let \mathscr{E} be an \mathscr{S} -topos, and let H be the complete Heyting algebra of subobjects of 1 in \mathscr{E} . Then $\mathscr{E}^* \simeq \tilde{H}$. If in addition the axiom of choice holds in \mathscr{E} , then (H is a complete Boolean algebra and) $\mathscr{E} \simeq \tilde{H}$.

Proof. We define a functor $F: \tilde{H} \to \mathcal{E}$ as follows. For each object $a: I \to H$ in \tilde{H} we put

$$F(a)=\coprod_{i\in I}a_i.$$

If $b: J \to H$ is an object in \tilde{H} and $p: a \to b$ an arrow in \tilde{H} , we define $F(p): F(a) \to F(b)$ as follows. From (1.2) and (1.3) we have

$$a_i \cong \coprod_{j \in J} p_{ij} \quad (i \in I)$$

and from the (unique) arrows $p_{ij} \rightarrow b_j$ given by (1.1) we obtain for each $i \in I$ a unique arrow s_i such that the diagram

$$p_{ij} \xrightarrow{b_j} b_j$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\coprod_{j \in J} p_{ij} \xrightarrow{s_i} \coprod_{j \in J} b_j$$

commutes for all $i \in I$, $j \in J$, where the downward arrows are canonical injections. We put p'_i for the composition

$$a_i \xrightarrow{\sim} \prod_{j \in J} p_{ij} \xrightarrow{s_i} \prod_{j \in J} b_j.$$

Thus p'_i is the unique arrow making the diagram

$$\begin{array}{cccc} p_{ij} & & & b_i \\ \downarrow & & \downarrow \\ a_i & \stackrel{p'_i}{\longrightarrow} & \coprod b_j \end{array}$$

$$(1.4)$$

commute. We finally define F(p) to be the unique arrow such that the diagram

commutes for each $i \in I$, where σ_i is the canonical injection.

It is not hard to check that F is a functor, and clearly each object in \mathscr{E}^* is (isomorphic to an object) in the range of F. Accordingly, to show that F is an equivalence it suffices to show that F is full and faithful.

To verify the fidelity of F, we first observe that the diagram (1.4) is a pullback for each $i \in I$, $j \in J$. For let

$$\begin{array}{c} r_{ij} \searrow \qquad b_j \\ \downarrow \qquad \downarrow \qquad \downarrow \\ a_i \xrightarrow{p'_i} \qquad \coprod b_j \end{array}$$

be a pullback. Then clearly, since (1.4) commutes, we have $p_{ij} \le r_{ij}$. On the other hand, by the universality of coproducts in \mathscr{E} , we have

$$a_i \cong \coprod_{j \in J} r_{ij},$$

so that

$$\bigvee_{j\in J} p_{ij} = a_i = \bigvee_{j\in J} r_{ij}.$$

But it now follows from the disjointness of coproducts in \mathscr{E} that $r_{ij} \wedge r_{ij'} = 0$ when $j \neq j'$. One easily concludes from this that $p_{ij} = r_{ij}$, so (1.4) is indeed a pullback. Now let $a \xrightarrow{p} b$ and $a \xrightarrow{q} b$ be arrows in \tilde{H} and suppose that F(p) = F(q). Then

Now let $a \stackrel{F}{\rightarrow} b$ and $a \stackrel{q}{\rightarrow} b$ be arrows in \tilde{H} and suppose that F(p) = F(q). Then $p'_i = q'_i$ for all $i \in I$ and so, since (1.4) is a pullback, it follows that $q_{ij} \leq p_{ij}$. Similarly, $p_{ij} \leq q_{ij}$ and so p = q. Hence F is faithful as claimed.

Finally, we show that F is full. Suppose that a, b are objects in \tilde{H} and that

 $F(a) \xrightarrow{f} F(b)$ is an arrow in \mathcal{E} . For each *i*, *j* form the pullback

$$\begin{array}{c} p_{ij} \longrightarrow b_{j} \\ \downarrow \\ a_{i} \xrightarrow{f\sigma_{i}} & \downarrow \\ & II b_{i} \end{array}$$

$$(1.5)$$

By the universality of coproducts in \mathscr{E} we have $\prod_{j \in J} p_{ij} \cong a_i$ and by the disjointness of coproducts in \mathscr{E} we have $p_{ij} \wedge p_{ij'} = 0$ for $j \neq j'$, whence $\bigvee_{j \in J} p_{ij} = a_i$. Hence $p = \langle p_{ij} \rangle_{i \in I, j \in J}$ is an arrow $a \rightarrow b$ in \tilde{H} . We claim F(p) = f. For this to be the case it suffices that $F(p)\sigma_i = f\sigma_i$ for all $i \in I$. But this follows immediately from (1.4), (1.5) and the fact that $p'_i = F(p)\sigma_i$.

Thus F is an equivalence and $\mathscr{E}^* \simeq \tilde{H}$.

Now suppose that \mathscr{E} satisfies the axiom of choice. Then, by 5.3 of [3], the subobjects of 1 form a set of generators in \mathscr{E} and so each object of \mathscr{E} is covered by a family of subobjects of 1. Using the axiom of choice in \mathscr{E} , it follows easily from this that each object of \mathscr{E} is isomorphic to a coproduct of subobjects of 1, whence $\mathscr{E} = \mathscr{E}^* \simeq \tilde{H}$. \Box

We recall that [1] that, for each complete Boolean algebra B, the Boolean extension $V^{(B)}$ of the universe of sets in the sense of Scott-Solovay may be regarded as an \mathscr{S} -topos in a natural way. Since the axiom of choice holds in such a topos (provided it holds in \mathscr{S} !), Theorem 1.1 yields as an immediate consequence the following well-known result.

1.2. Corollary. An \mathscr{S} -topos is equivalent to one of the form $V^{(B)}$ for a complete Boolean algebra B if and only if it satisfies the axiom of choice.

Our next theorem shows that a number of conditions on \mathscr{E}^* and H are equivalent.

1.3. Theorem. Let \mathscr{E} be an \mathscr{G} -topos and let H be the complete Heyting algebra of subjects of 1 in \mathscr{E} . Consider the conditions:

- (i) & satisfies the axiom of choice;
- (ii) &*⇔& is an equivalence;
- (iii) Ω_{ε} is isomorphic to an object in \mathscr{E}^* ;
- (iv) & is Boolean;
- (v) $\mathscr{E}^* \simeq \tilde{H}$ is a topos;
- (vi) $\mathscr{E}^* \simeq \tilde{H}$ has a subobject classifier;
- (vii) H is a Boolean algebra;
- (viii) $\tilde{H} \simeq V^{(B)}$ for some complete Boolean algebra B.

Then (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v), and (v) through (viii) are equivalent. If \mathscr{E} is localic over \mathscr{S} , then all the conditions are equivalent. Thus conditions (v) through (viii) are equivalent for any complete Heyting algebra H.

Proof. (i) \Rightarrow (ii) follows from Theorem 1.1.

(ii) \Rightarrow (iii) is trivial.

(iii) \Rightarrow (iv). Recall that an object X of a topos is said to be *decidable* if the diagonal subobject $X \xrightarrow{\Delta} X \times X$ has a complement. It is easy to verify that, since each object X of \mathscr{T} is decidable, so is each object of \mathscr{E} of the form γ^*X and hence so is any subobject of such an object; i.e. any object in \mathscr{E}^* is decidable. Thus condition (iii) implies that $\Omega_{\mathscr{E}}$ is decidable, and this is well known to be equivalent to Booleanness of \mathscr{E} .

(iv) \Rightarrow (iii). If \mathscr{E} is Boolean, then $\Omega_{\mathscr{E}} \cong 1 + 1 \cong \gamma^*(1+1) \in \mathscr{E}^*$.

(ii) \Rightarrow (i). If (ii) holds, then \mathscr{E} is certainly localic over \mathscr{L} ; but since (ii) \Rightarrow (iii) \Rightarrow (iv) \mathscr{E} is also Boolean. Then by 5.39 of [3] the axiom of choice in \mathscr{L} yields the axiom of choice in \mathscr{E} .

(iii) \Rightarrow (vi). Since δ^* is easily seen to be closed under products and subobjects in δ , it follows that it is also closed under pullbacks in δ . The implication in question now follows easily.

 $(v) \Rightarrow (vi)$ is trivial.

(vi) \Rightarrow (vii). Let $\langle b_j \rangle_{j \in J}$ be the subobject classifier in \tilde{H} . Then, given $a \in H$, the object $\langle a \rangle$ of \tilde{H} is a subobject of the terminal object $\langle 1 \rangle$ in \tilde{H} and so there are arrows

$$\langle 1 \rangle \xrightarrow{p} \langle b_j \rangle_{j \in J}, \qquad \langle 1 \rangle \xrightarrow{q} \langle b_j \rangle_{j \in J}$$

in \tilde{H} such that

$$\begin{array}{cccc} \langle a \rangle & \longrightarrow & \langle 1 \rangle \\ \downarrow & & \downarrow^{q} \\ \langle 1 \rangle & \stackrel{p}{\longrightarrow} & \langle b_{j} \rangle_{j \in J} \end{array}$$

$$(1.6)$$

is a pullback. Since p and q are arrows in \tilde{H} , we have

$$p_j \wedge p_k = q_j \wedge q_k = 0 \quad \text{for } j \neq k \in J,$$
$$1 = \bigvee_{j \in J} p_j = \bigvee_{k \in J} q_k,$$

so that

$$\bigvee_{j \in J} \bigvee_{k \in K} p_j \wedge q_k = 1.$$
(1.7)

Since (1.6) commutes, we have

$$a \wedge q_j = a \wedge p_j \quad (j \in J),$$

so that

$$a = a \wedge 1 = \bigvee_{j \in J} a \wedge p_{j}$$
$$= \bigvee_{j \in J} a \wedge p_{j} \wedge q_{j}$$
$$\leq \bigvee_{j \in J} p_{j} \wedge q_{j}.$$
(1.8)

But since (1.6) is a pullback, we must have, for all $c \in H$,

$$\forall j \in J \ [c \land p_j = c \land q_j] \Rightarrow c \le a.$$

In particular, taking $c = \bigvee_{j \in J} p_j \wedge q_j$, we get

$$\bigvee_{j\in J} p_j \wedge q_j \leq a,$$

so that, by (1.8), $a = \bigvee_{j \in J} p_j \wedge q_j$. But then, by (1.7), *a* has a complement $\bigvee_{j \neq k} p_j \wedge q_k$ in *H*. This gives (vii).

(vii) \Rightarrow (viii). This follows from Theorem 1.1.

 $(viii) \Rightarrow (v)$ is trivial.

Finally, if \mathscr{E} is localic over \mathscr{S} , then (vii) \Rightarrow (iv) and hence (in this case) (vii) \Rightarrow (i). For suppose that \mathscr{E} is not Boolean; then $\neg \neg : \Omega \rightarrow \Omega$ is not the identity. Hence by the localicity of \mathscr{E} there is $U \rightarrow 1$ and $U \xrightarrow{\alpha} \Omega$ such that

$$U \xrightarrow{\alpha} \Omega \neq U \xrightarrow{\alpha} \Omega \xrightarrow{\neg \neg} \Omega.$$

Since Ω is injective there is $1 \xrightarrow{\beta} \Omega$ such that

$$U \xrightarrow{\alpha} \Omega = U \xrightarrow{\beta} \Omega$$

Clearly, then

$$1 \xrightarrow{\beta} \Omega \xrightarrow{\neg \neg} \Omega \neq 1 \xrightarrow{\beta} \Omega.$$

But this means that the subobject of 1 classified by β is not equal to its double complement in *H*, i.e. *H* is not Boolean. \Box

Remark. It is well known that the implication (i) \Rightarrow (iv) cannot be reversed; e.g. take \mathscr{E} to be the topos \mathscr{F}^G of G-sets for a group G. A similar counterexample shows the irreversibility of the implication (iv) \Rightarrow (v): take \mathscr{E} to be the topos \mathscr{F}^M of M-sets for a monoid M which is not a group. Then E is not Boolean; on the other hand 1 has only two subobjects 0 and 1 in \mathscr{E} , so $\mathscr{E}^* = \mathscr{F}$ and (v) is satisfied.

2. Toposes defined over an arbitrary base topos

We now suppose that \mathscr{E} is a topos defined over an arbitrary base topos \mathscr{F} by a geometric morphism γ and investigate the extent to which the results and constructions of the previous section carry over to this more general setting. We shall employ freely the internal (Mitchell-Benabou) language of a topos as presented in §5.4 of [3].

To begin with, let us see how to generalize the construction of \tilde{H} . Let H be an internally complete Heyting algebra object in \mathcal{F} ; we define the category \tilde{H} as follows. (It is important to observe that \tilde{H} is an 'honest-to-goodness' category, not an internal category in \mathcal{F} .)

First of all, the objects of \tilde{H} are the objects of \mathcal{F}/H , i.e. all arrows $I \xrightarrow{a} H$ in \mathcal{F} . Before defining the arrows of \tilde{H} we need some notation. We let

 $\lambda_H:\Omega_{\mathcal{F}}\to H$

be the arrow defined by

$$\lambda_H(p) = \bigvee_H \{a \in H : (a = 1_H) \land p\},\$$

where p is a variable of type $\Omega_{\mathcal{F}}$. For each object J of \mathcal{F} , we let

 $\delta_J: J \times J \to \Omega_j$

be the classifying arrow of the diagonal subobject of $J \times J$, and we put eq_J for the composition

$$J \times J \xrightarrow{\delta_J} \Omega_J \xrightarrow{\lambda_H} H.$$

Now we can define the arrows of \tilde{H} . Given objects $I \xrightarrow{a} H$ and $J \xrightarrow{b} H$ of \tilde{H} , an arrow $a \xrightarrow{p} b$ in \tilde{H} is an arrow $I \times J \xrightarrow{p} H$ in \mathcal{F} satisfying the following conditions, where *i*, *j*, *j'*, *x* are variables of types *I*, *J*, *J*, *H* respectively:

$$F \models p(i,j) \le_H b(j) \tag{2.1}$$

 $F \models p(i, j) \land p(i, j') \le_H \operatorname{eq}_J(j, j')$ (2.2)

$$F \models \bigvee_{H} \{ x: \exists j \ [x = p(i, j)] \} = a(i).$$
(2.3)

(Notice that these conditions are just the 'internal' analogues of the conditions (1.1), (1.2), (1.3).) If $K \xrightarrow{c} H$ is an object of \tilde{H} and $J \times K \xrightarrow{q} H$ is an arrow $b \longrightarrow c$ in \tilde{H} , the composition qp = r is given by

$$r(i,k) = \bigvee_H \{x: \exists j \ [x = p(i,j) \land q(j,k)]\},\$$

where k is a variable of type k. The identity arrow

$$a \xrightarrow{\operatorname{id}_a} a$$

in $ilde{H}$ is given by

 $\operatorname{id}_a = \wedge_H \cdot \langle \operatorname{eq}_I, a\pi_1 \rangle,$

where π_1 is 'projection onto the first coordinate' and \wedge_H is the meet operation in H. It is readily checked that these data do determine a category.

Now let $\mathscr{E} \xrightarrow{\gamma} \mathscr{F}$ be a geometric morphism. Then ([3], 5.36) $H = \gamma_* \Omega_{\mathscr{E}}$ is an internally complete Heyting algebra object in \mathscr{F} , and in this case it is easily verified that the arrow $\lambda = \lambda_H$ has $(\gamma^* \dashv \gamma_*)$ -transpose $\overline{\lambda} : \gamma^* \Omega_{\mathscr{F}} \to \Omega_{\mathscr{E}}$ classifying γ^* (true $_{\mathscr{F}}$).

We recall that we have defined \mathscr{E}^* to be the full subcategory of \mathscr{E} whose objects are all subobjects of objects of the form γ^*I for $I \in \mathscr{F}$. We shall prove the analogue of 1.1 in this more general context.

2.1. Theorem. $\mathscr{E}^* \simeq (\gamma_* \Omega_{\mathscr{E}})^{\sim}$.

Before giving the proof, we need some more terminology and a lemma. Let $X \xrightarrow{f} Y$ be a partial arrow in \mathcal{E} , given by the diagram

$$\begin{array}{c} X' \xrightarrow{f} Y \\ f' \downarrow \\ X \end{array} \tag{2.4}$$

We define the graph of f, gph(f), to be the image of the arrow

$$X' \xrightarrow{\langle f', f \rangle} X \times Y,$$

i.e. the extension of the formula

$$\exists x' \ [\langle x, y \rangle = \langle f'(x'), f(x') \rangle],$$

where x, x', y are variables of types X, X', Y respectively.

2.2. Lemma. Let $X \times Y \xrightarrow{r} \Omega_{\delta}$, let R be the subobject of $X \times Y$ classified by r, and let $\lceil R \rceil$ be the corresponding global element of $\Omega_{\delta}^{X \times Y}$. Then the following are equivalent:

- (i) R = gph(f) for some $X \xrightarrow{f} Y$;
- (ii) $E \models \langle x, y \rangle \in \lceil R \rceil \land \langle x, z \rangle \in \lceil R \rceil \Rightarrow y = z;$
- (iii) $E \vDash r(x, y) \land r(x, z) \leq_{\Omega_{\tau}} \delta_{Y}(y, z),$

where x, y, z are variables of type X, Y, Y respectively. Moreover, if these conditions hold, then the subobject X' of X on which f is defined may be taken to be $||x: \exists y \langle x, y \rangle \in \lceil R \rceil||$, or equivalently $||x: \exists y [r(x, y) = true_f]||$.

Proof. (ii) \Leftrightarrow (iii) holds by definition.

(i) \Rightarrow (ii). We have, introducing variables x', x" of type X',

$$\begin{aligned} \mathscr{E} &\coloneqq \langle x, y \rangle \in \lceil \mathsf{gph}(f) \rceil \land \langle x, z \rangle \in \lceil \mathsf{gph}(f) \rceil \\ \Rightarrow \exists x' \ [x = f'(x') \land y = f(x')] \land \exists x'' \ [x = f'(x'') \land z = f(x'')] \\ \Rightarrow y = z, \end{aligned}$$

by the monicity of f' (see diagram (2.4)).

(ii) \Rightarrow (i). Form the pullback

$$X' \xrightarrow{f} Y$$

$$f' \bigvee_{X \xrightarrow{|\{y: \langle x, y \rangle \in [R]\}|}} \bigvee_{Y} \{\cdot\}$$

$$(2.5)$$

Then we have

$$\mathscr{E} \models \langle x, y \rangle \in \left[\operatorname{gph}(f) \right] \Leftrightarrow \exists x' [x = f'(x') \land y = f(x')]$$
$$\Leftrightarrow \{x: \langle x, z \rangle \in \left[R \right] \} = \{y\} \text{ (since (2.5) is a pullback)}$$
$$\Leftrightarrow \langle x, y \rangle \in \left[R \right] \text{ (by (ii)).}$$

Thus R = gph(f) as required.

To prove the final assertion, we merely observe that, by the above,

 $\mathscr{E} \coloneqq \mathscr{I}x' \; [x = f'(x')] \; \Leftrightarrow \; \mathscr{I}y \; [\langle x, y \rangle \in \lceil R \rceil]. \qquad \Box$

Now we can provide the

Proof of Theorem 2.1. We define a functor

 $\beta:(\gamma_*\Omega_\ell)^- \to \mathscr{E}^*$

as follows. Given an arrow $I \xrightarrow{a} \gamma_* \Omega_{\ell}$ in $(\gamma_* \Omega_{\ell})^{\sim}$, let

$$\gamma^*I \xrightarrow{a} \Omega_i$$

be its transpose across the adjunction $\gamma^* \rightarrow \gamma_*$, and let $\beta(a)$ be the subobject of γ^*I classified by \bar{a} . Clearly $\beta(a) \in \mathscr{E}^*$ and every object of \mathscr{E}^* is isomorphic to an object of this form.

Next, given an object $J \xrightarrow{b} \gamma_* \Omega_A$ and an arrow $a \xrightarrow{p} b$ in $(\gamma_* \Omega_A)^-$, i.e. an arrow $I \times J \xrightarrow{p} \gamma_* \Omega_A$ in \mathcal{F} satisfying (2.1), (2.2), (2.3) (with $H = \gamma_* \Omega_A$), let

 $\tilde{p}: \gamma^*I \times \gamma^*J \cong \gamma^*(I \times J) \longrightarrow \Omega_{\mathcal{E}}$

be its transpose across $\gamma^* \neg \gamma_*$. After transposition across $\gamma^* \neg \gamma_*$, conditions (2.1), (2.2) and (2.3) become the following, where x, y, z are variables of type γ^*I , γ^*J , γ^*J ,

respectively, and \bar{a}, \bar{b} are the transposes of a, b, respectively:

$$\mathcal{E} \models \bar{p}(x, y) \le \bar{b}(y) \tag{2.1'}$$

$$\mathscr{E} \models \vec{p}(x, y) \land \vec{p}(x, z) \le \delta_{y^* J}(y, z) \tag{2.2'}$$

$$\left|\exists y \left[\bar{p}(x, y) = \operatorname{true}_{\delta}\right]\right| = \bar{a}(x). \tag{2.3'}$$

From Lemma 2.2 we see that (2.2') implies that there is a partial arrow

$$\gamma^*I \xrightarrow{f} \gamma^*J,$$

unique up to isomorphism, such that gph(f) is equal to the subobject of $\gamma^*I \times \gamma^*J$ classified by $\overline{\rho}$. Condition (2.3') tells us that f is defined on the subobject $\beta(a)$ of γ^*I classified by \overline{a} , and (2.1') that the image of f is contained in the subobject $\beta(b)$ of γ^*J classified by \overline{b} . Thus we may regard f as an arrow

$$\beta(a) \xrightarrow{f} \beta(b).$$

We put $\beta(p) = f$.

One can now check (tediously!) that β preserves composition and the identity arrows. Thus we have a functor

$$\beta:(\gamma^*\Omega_{\mathcal{F}})^{\sim}\longrightarrow \mathscr{E}^*.$$

It remains to show that β is an equivalence of categories. We have already remarked that every object in \mathscr{E}^* is isomorphic to one in the range of β . Also, β is clearly faithful. To show that β is full, let $a, b \in (\gamma_* \Omega_{\mathcal{E}})^-$ and let $\beta(a) \xrightarrow{f} \beta(b)$ be an arrow in \mathscr{E}^* . Let \overline{p} be the characteristic arrow of the subobject of $\gamma^*I \times \gamma^*J$ corresponding to the graph of f. It is then easy to check that (2.1'), (2.2'), (2.3') hold for \overline{p} , and transposition across $\gamma^* \dashv \gamma_*$ yields (2.1), (2.2), (2.3) for its transpose p. Thus $a \xrightarrow{p} b$ is an arrow in $(\gamma_* \Omega_{\mathcal{E}})^-$, and clearly $\beta(p) = f$. Hence β is full, and therefore and equivalence. \Box

By taking $\mathscr{E} = \mathscr{F}$ and γ the identity functor in Theorem 2.1, we immediately obtain

2.3. Corollary. $\tilde{\Omega}_{j} \simeq \mathcal{F}$.

Having affirmed that Theorem 1.1 carries over to the case of an arbitrary base topos, we may now ask to what extent the same is true of Theorem 1.3. I have not been able to solve this problem completely, but I shall give a partial solution in Theorem 2.5. First, however, we require another lemma, which gives a canonical representation of objects in \mathscr{E}^* .

2.4. Lemma. For each object X of & the following are equivalent: (i) X ∈ &*;

(ii) there is a monic $X \to \gamma^* \gamma_* \overline{X}$, where \overline{X} is the partial map classifier of X. If X is injective, then \overline{X} may be replaced by X.

Proof. (ii) \Rightarrow (i) being trivial, we need only prove (i) \Rightarrow (ii). If $X \in \mathscr{E}^*$, then by definition there is $Y \in \mathscr{F}$ and a monic $X \rightarrow \gamma^* Y$. Hence there is $\gamma^* Y \xrightarrow{\alpha} \overline{X}$ such that the diagram

commutes. Now if $Y \xrightarrow{\alpha} \gamma_* \overline{X}$ is the transpose of α across $\gamma^* \dashv \gamma_*$, we have the commutative diagram

where ε is the counit arrow. Hence the composition

$$X \longrightarrow \gamma^* Y \xrightarrow{\gamma^*(\bar{\alpha})} \gamma^* \gamma_* \bar{X}$$

is monic.

Clearly, if X is injective, we may replace \bar{X} by X and η by the identity arrow. \Box

Now we can prove:

2.5. Theorem. Let \mathscr{F} be a topos, let \mathscr{E} be a topos defined over \mathscr{F} by a geometric morphism γ , and let $H = \gamma_* \Omega_{\mathscr{E}}$. Consider the conditions:

- (i) Ω_{ℓ} is isomorphic to an object in \mathscr{E}^* ;
- (ii) the counit arrow $\gamma^*\gamma_*\Omega_{\ell} \xrightarrow{\varepsilon} \Omega_{\ell}$ has a section;

(iii) & is Boolean;

(iv) $\mathscr{E}^* \simeq \tilde{H}$ has a subobject classifier;

(v) H is an internal Boolean algebra.

Then (i) \Leftrightarrow (ii). If \mathcal{F} is Boolean, then (i) \Leftrightarrow (iii) \Rightarrow (iv) \Leftrightarrow (v). Finally, if \mathcal{F} is Boolean and \mathscr{E} is localic over \mathcal{F} , then all the conditions are equivalent.

Proof. (ii) \Rightarrow (i) is trivial.

(i) \Rightarrow (ii). By Lemma 2.4, if (i) holds, then since Ω_{λ} is injective we have a monic $\Omega_{\lambda} \xrightarrow{\alpha} \gamma^* \gamma_* \Omega_{\lambda}$. Again using the injectivity of Ω_{λ} , there is an arrow $\gamma^* \gamma_* \Omega_{\lambda} \xrightarrow{\beta} \Omega_{\lambda}$

such that $\beta \cdot \alpha = id$. Let $\gamma_* \Omega_{\beta} \xrightarrow{\beta} \gamma_* \Omega_{\beta}$ be the transpose of β across $\gamma^* \neg \gamma_*$. Then $\beta = \varepsilon \cdot \gamma^*(\overline{\beta})$, so

$$\mathrm{id} = \beta \cdot \alpha = \varepsilon \cdot \gamma^*(\vec{\beta}) \cdot \alpha.$$

From now on we suppose that \mathscr{F} is Boolean. (i) \Leftrightarrow (iii) is proved in exactly the same manner as (iii) \Leftrightarrow (iv) in Theorem 1.3. (i) \Rightarrow (iv) is proved in just the same way as (iii) \Rightarrow (vi) in Theorem 1.3. (iv) \Rightarrow (v). Suppose that \mathscr{E}^* has a subobject classifier

$$1 \xrightarrow{\text{true'}} \Omega'.$$

Since Ω' is a subobject of an object of the form γ^*X for some $X \in \mathcal{F}$ and since each object in the Boolean topos \mathcal{F} is decidable, Ω' itself must be decidable. By standard arguments, the global element

$$1 \xrightarrow{\text{true}'} \Omega'$$

must then have a complement

$$\stackrel{\text{false'}}{\longrightarrow} \Omega'.$$

It follows that

is an isomorphism between 1 + 1 and Ω' . Thus 1 + 1 is the subobject classifier in \mathscr{E}^* .

Now, by §1 of [2], we may without loss of generality replace \mathscr{E} by the *localic* topos $\mathscr{F}[H]$ of internal sheaves on H (since \mathscr{E}^* is unaffected by the change). Since $\mathscr{F}[H]$ is localic over \mathscr{F} , we have a diagram of the form

where $X \in \mathcal{F}$ and Ω is the subobject classifier in $\mathcal{F}[H]$. Since Ω is injective, we have an epic $y^*X \rightarrow \Omega$. Form the pullback

Since Z and γ^*X are both in ℓ^* and 1+1 is the subobject classifier in ℓ^* , we have a

pullback (in \mathscr{E}^* , and hence also in $\mathscr{F}[H]$)

where σ_1 is a canonical injection. Combining this with the obvious pullback diagram

yields a pullback

But then α and $\beta \cdot \binom{true}{false}$ both classify the subobject Z of γ^*X , so they are equal; and since α is epic, so is $\binom{true}{false}$. But $\binom{true}{false}$ is obviously monic, and so it is an isomorphism. Therefore $\mathscr{F}[H]$ is Boolean, which implies, by 2.2 of [2], that H is an internal Boolean algebra.

 $(v) \Rightarrow (iv)$. Again we may without loss of generality replace \mathscr{E} by $\mathscr{F}[H]$. If H is an internal Boolean algebra, then $\mathscr{F}[H]$ is Boolean by 2.2 of [2]. So the subobject classifier 1 + 1 of $\mathscr{F}[H]$ is in \mathscr{E}^* , and is clearly a subobject classifier there as well.

Finally, if \mathscr{E} is localic over \mathscr{F} , then $\mathscr{E} \simeq \mathscr{F}[H]$ by the relative Giraud theorem, and (v) yields (iii) by 2.2 of [2]. \Box

3. Final remarks

In the original version of this paper, I posed a number of open problems, one of which has recently been solved by Gordon Monro in [4]. These problems were:

(a) Does $\mathscr{E}^* \simeq \tilde{H}$ always have exponentials?

(b) If \mathscr{E} is a Boolean topos, defined and localic over a Boolean topos \mathscr{F} , must the inclusion $\mathscr{E}^* \hookrightarrow \mathscr{E}$ be an equivalence? (By Theorem 1.3, this is true when $\mathscr{F} = \mathscr{F}$ and the axiom of choice holds. It can also be shown to hold when \mathscr{F} is any topos satisfying the axiom of choice.)

(c) If the answer to (b) is, in general, no, find a characterization of those toposes defined over a (Boolean) topos \mathcal{F} for which $\delta = \delta^*$.

J.L. Bell

Let me sketch a proof that a positive answer to (a) (even just for *Boolean* \mathscr{E}) yields the same for (b). To begin with, it is easy to show that \mathscr{E}^* inherits (finite) products from \mathscr{E} . So if \mathscr{E}^* has exponentials, where \mathscr{E} is Boolean and defined over a Boolean topos \mathscr{F} by a geometric morphism γ , then \mathscr{E}^* is a Boolean topos with subobject classifier 2 = 1 + 1 inherited from \mathscr{E} . Thus \mathscr{E} and \mathscr{E}^* are both localic \mathscr{F} -toposes and, by the relative Giraud theorem, they are both equivalent over \mathscr{F} to the topos $\mathscr{F}[B]$ of internal sheaves on the internally complete Boolean algebra $B = \gamma_* 2$ in \mathscr{F} . Accordingly we have a commutative diagram

where α is an equivalence. If $X \in \mathscr{E}^*$ there is a diagram of the form $X \to \gamma^* A$ in \mathscr{E} and hence in \mathscr{E}^* . Applying α gives $\alpha X \to \alpha(\gamma^* A) = \gamma^* A$. Therefore $\alpha X \in \mathscr{E}^*$. Since α is an equivalence, every object in \mathscr{E} is isomorphic to one of the form αX , and hence to one in \mathscr{E}^* . Therefore $\mathscr{E}^* \subseteq \mathscr{E}$ is an equivalence.

Now Monro has shown that the answer to (b) is, in general, no. In fact he shows that $\mathscr{E}^* \hookrightarrow \mathscr{E}$ can fail to be an equivalence even when the base topos \mathscr{F} is \mathscr{P} , provided the axiom of choice fails in a certain (relatively consistent) way in \mathscr{F} . He starts with the well-known Halpern-Levy model N of set theory in which the axiom of choice fails but in which every set is totally orderable. Then he constructs a certain complete Boolean algebra B in N such that, in the corresponding Boolean extension $N^{(B)}$, with probability 1 the power set P(R) of the set of real numbers is not totally orderable. Thinking of N as our base topos \mathscr{F} of sets and $N^{(B)}$ as the (Boolean) topos \mathscr{E} defined over \mathscr{F} , it follows that the object P(R) of \mathscr{E} cannot be (isomorphic to an object) in \mathscr{E}^* , for it is not hard to see that any object in \mathscr{E}^* must be totally orderable. So in this case the inclusion $\mathscr{E}^* \hookrightarrow \mathscr{E}$ cannot be an equivalence. We also see that (a) fails as well: \tilde{B} does not have exponentials.

Problem (c) is, however, still open.

Acknowledgements

I would like to thank Mike Brockway for the many discussions we've had concerning the results presented here, Peter Johnstone for pointing out implication $(ii) \Rightarrow (iv)$ of Theorem 1.3 to me, and Gordon Monro for providing a preprint of [4].

References

- D. Higgs, A category approach to Boolean-valued set theory, Unpublished typescript, University of Waterloo (1973).
- [2] P.T. Johnstone, Factorization and pullback theorems for localic geometric morphisms, Institut de Mathematique Pure et Appliqué, Univ. Cath. de Louvain, Seminaire de Math. Pure, Rapport no. 79 (1979).
- [3] P.T. Johnstone, Topos Theory (Academic Press, London, 1977).
- [4] G.P. Monro, On generic extensions without the axiom of choice, Journal of Symbolic Logic, to appear.